

현대-기아 수소연료전지자동차

2008.11

현대-기아자동차 임태원

제목 현대-기아 수소연료전지자동차

- 1. 수소연료전지차
- 2. 해외 및 국내 개발 동향
- 3. 현대-기아 수소연료전지차 개발 현황
- 4. 녹색성장의 구현

■ 수소연료전지차 출현 배경

경영학회 / 2008.11.07

북미 배기가스 규제

무공해차 의무 판매

지구온난화

Green Car (HEV, EV, FCEV)

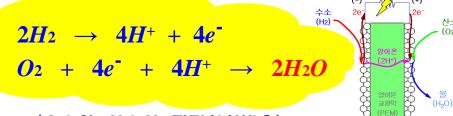
(\$

자동차 산업의 지속적 성장

신 성장동력

수소연료전지와 내연기관 비교

연료전지: 수소와 산소를 반응시켜 전기를 생성하는 일종의 발전기 - 물 전기분해의 반대



Carnot 내연기관

$CxHySz + O2 + N2 \rightarrow$ $CO + CO_2 + NO_X + SO_X + H_{2}O$

(화석연료의 연소반응)

연료전지

(수소와 산소의 전기화학반응)

• 동력기관

- 연료
- 효율
- 배기물질

내연기관차

엔진, 트랜스미션

화석연료

20 ~30%

CO2, HC, CO, NOx, SOx

연료전지차

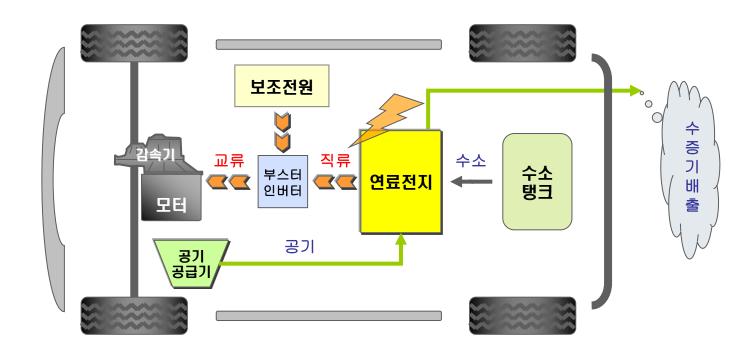
연료전지, 모터

수소

50 ~ 60%

수증기

→ 비화석연료


→ 높은 효율/연비

→ 무공해

■ 수소연료전지차 구성 및 원리

경영학회 / 2008.11.07

■ 수소연료전지자동차의 구성 및 원리 (동영상 : 1분46초)

수소연료전지차 개발 효과

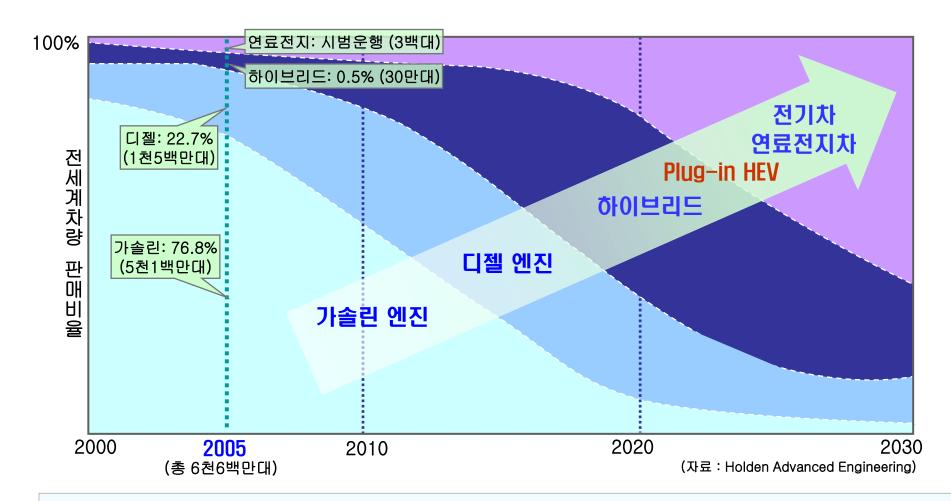
	Well-to-Tank	Tank-to-Wheel	Well-to-Wheel (Total η%)
	(Fuel Prod. η %)	(Vehicle η %)	10 20 30 40
Gasoline ICE 1)	88	18	16
Diesel ICE 2)	89	22	20
Hybrid Vehicle 3)	88	30	26
Electric Vehicle	26 ⁴⁾	80	21
Fuel Cell Vehicle	70 ⁵⁾	52	36
FCEV (Goal)	70	60	42

- 1) Gasoline Internal Combustion: 128kW, AT; 2) Diesel internal Combustion: 94kW, AT; 3) Hybrid: Internal Combustion + Electric
- 4) The art of state; 5) Natural gas to Hydrogen

	주행비용		CO ₂ 배출량	
	현재	향후(2015)	(g/km)	
가솔린 내연 기관	150원 / km	300원 / km	140 ~ 240	
연료전지	60원 / km	25원 / km	0	

- 중형차 (현재 1,500원/ℓ, 2015년 3,000원/ℓ, 10km/ℓ) 기준
- 수소가격 (현재 5,000원/kg, 2015년 2,500원/kg, 세전) 기준

친환경자동차 시장 전망



가솔린엔진

디젤 엔진

하이브리드

전기차/연료전지

환경 규제 강화 및 에너지 문제 등으로 하이브리드를 포함한 친환경차 시장 급속 성장

각국 정책과 연료전지 산업화 로드맵

- 온실가스감축 프로그램과 연계하여 로드맵 구축
- 2020년 본격 상용화를 목표로 지원정책 추진 중

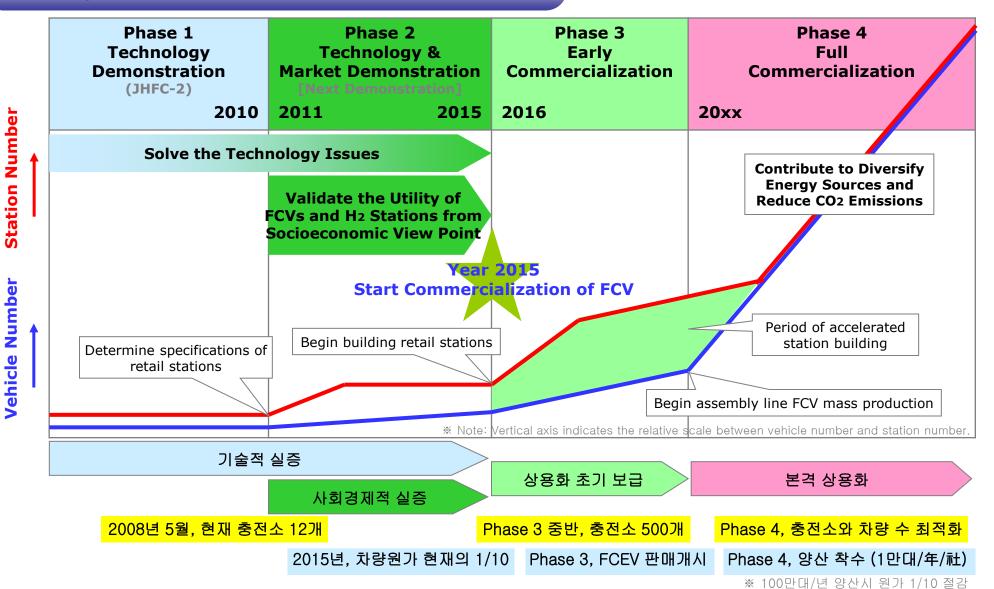
• CCTP (Climate Change Technology Program, '07.11)

에너지에 대한 강력한 정부 리더십 + CA의 확고한 환경정책 ightarrow 수소연료전지차의 상용화를 선도

• Cool Earth - Innovative Energy Technology Programme ('08.04)

정부의 적극적, 체계적인 육성 정책 + 민간의 조직적 대응 (FCCJ 등) → 수소연료전지차 초기시장 및 기술표준 선도

SET Plan (Strategic Energy Technology Plan, '07.11)


수소연료전지차 기술플랫폼 발표 (2005) → 대형 정부/민간 공동협력프로그램을 통한 상용화 추진 (JTI 프로그팸)

■ 사례: 일본 수소연료전지차 산업화 전략

FCCJ, Commercialization Scenario ('08. 06)

수소연료전지차 시장 전망 (美)

■ 2015년 성능 및 설계원가 목표 달성 후, 2020년 전후 본격 판매 예상

HEV 시장 규모의 12년 후행 시나리오로 각종 인센티브 정책 검토 中 (美 에너지부)

2012년 수천대/년

2015년 수만대/년

2018년 수십만대/년

2025년 누적 500만대

정부 주도 시장 육성

(수소 인프라 구축, 차량 보급 정책, 기술 개발 지원)

민간 주도 시장 확대

자료:美에너지부 (Department of Energy)

■ 한국 수소경제 Vision 2030 (2007, 지식경제부)

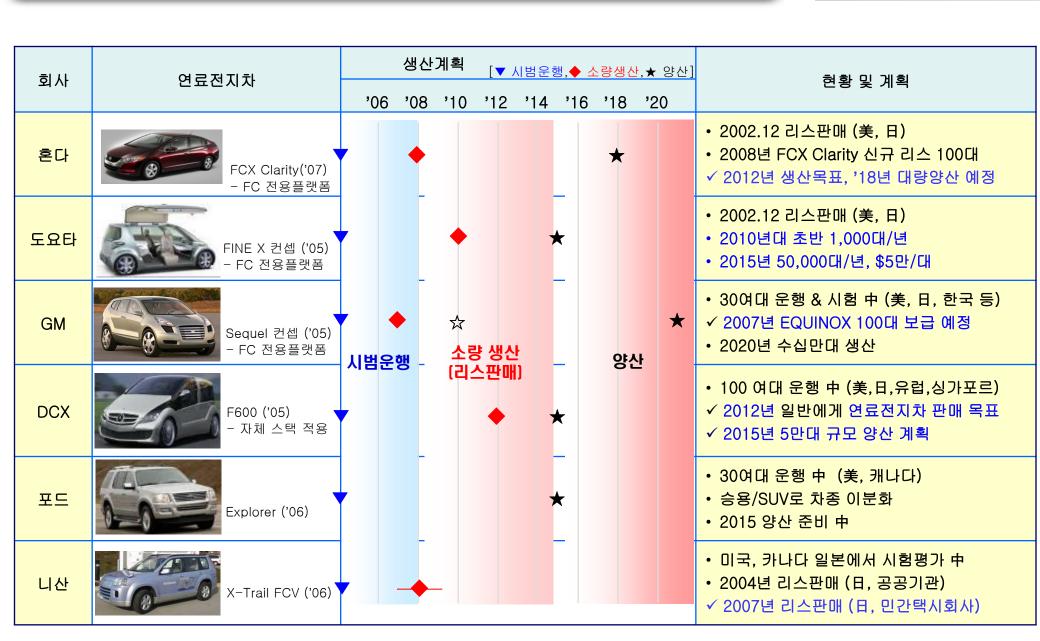
경영학회 / 2008.11.07

2003 ~ 2012
연구개발 및 초기보급

- . 성구성색 시전이의 결정/모답시기
- . 국내 수소에너지 점유율 ▶

정보정채 지워하이 신즈/보근시기	기숙개박이 와성 수소	이끄라 화대 자브	· 전 시장형성
연구개발 및 초기보급	시장형성	시장확대	수소경제 진입
2003 ~ 2012	2013 ~ 2020	2021 ~ 2030	2031 ~ 2040

'03–'05	'06–'08	'09–'12	
기술개발 🕨 실증적용 📗		▶ 시장진입 및 확대	
● 분산발전 (2	50-1000kW)	400MW 보급	
● 상업용 (10)-50kW)	80기	
● 가정용 (3kW 이하)		10,000	
● 수소충전소		וכס1	
● 연료전지차 (FCV)		500대	
● 연료전지버스 (FCBus)		20대	
▲화석연료.	분산형 수소충전	<u></u>	


연료전지 발전 점유율			
・분산 발전 1,000MW・상업용 2,000 기・가정용 100,000 기	10%	15%	
연료전지차 시장 점유율			
●수소충전소 500 기 ● 연료전지차 (FCV) 50,000 대	15%	50%	
▲중앙공급식 수소생산 ▲재생에너지 활용			

▲정부기관 주도 시장형성 ▲공공기관/지자체로 시장확대 ▲연료전지차 민간 판매 ▲대도시 중심의 Fleet 운영 ▲전국에서 운행 ▲주변 위성도시로 운행지역 확대

■ 수소연료전지차 개발 현황 및 계획

경영학회 / 2008.11.07

현대-기아 연료전지차 개발 이력

경영학회 / 2008.11.07

- 모하비 FCV (115 kW급)
- **차세대 FCV** (시범보급용)

2007

- 투싼 FCV-II (100 kW 독자개발)
- 초저상 FC-BUS II (200 kW 독자개발)
- I-Blue FCV (컨셉)

- 투싼, 스포티지 FCV (80 kW 독자개발)
- 초저상 FC-BUS (160 kW 독자개발)

국내 모니터링사업 $(2006.08 \sim 2009.07)$

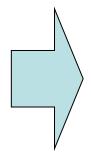
2004 ~ 2005

- 투싼 FCV (80 kW)
- 스포티지 FCV (80 kW)

북미 DOE 시범운행사업

 $(2004.09 \sim 2009.08)$

- 싼타페 FCV (75 kW)


현대-기아 연료전지차 개발 구도

- ❖ 전문업체와 공동개발을 통한 연료전지차 기술 Feasibility 평가 및 초기 경쟁기반 구축
- ❖ 핵심기술에 대한 독자 기술력 확보 / 양산을 대비한 부품 국산화와 부품 공급망 조기 구축
- ❖ 기술경쟁력 향상을 위한 글로벌 네트워크 강화: 국외 실증프로그램 참여, 차량 상호평가, 표준활동

전문업체와 공동개발

- 연료전지시스템개발: UTC Power
 - 75kW 싼타페 연료전지차 ('00.11)
 - 80kW 투싼 연료전지차 ('04.12)
 - 스포티지 연료전지차 ('05.06)
- ▶ 수조저장시스템개발: 퀀텀/다이나텍
 - 350바 시스템 최초 적용 ('01.11)

연료전지 독자 / 국산화 개발

- ▶ 연료전지시스템개발 (1998 ~)
 - 80kW 스포티지 연료전지차 ('05.12)
 - 100kW 투싼 연료전지차 ('07.08)
 - 160kW 연료전지버스 ('06.11)
 - 200kW급 연료전지버스 ('07.03)
- 부품개발 인프라 구축 ('04.05 ~)
- 지경부 모니터링사업 참여 ('06.07~)

■ 공동개발: 개발역량 집중을 통한 초기 경쟁력 확보

싼타페 연료전지차 - 2000년

→ CaFCP 참여 (2000.11)

▶ 개발기간: 2000.4. ~ 2001.2.

연료전지시스템	75 kW
수소저장시스템	350바 압축가스
최대속도	124 kph
가속성능 (0 – 100)	17.5 초
항속거리	160km
연비 (가솔린등가)	19kpl

투싼 연료전지차 - 2004년

DOE 시범운행 참여 (2004.12)

■ 실용성 및 상품성을 고려한 연료전지차

- · -20°C 이하에서 냉시동
- · 연료전지 수명 1,500시간
- 동등한 실내 공간
- 운전 편의성 확보 (질소 퍼징 불 필요)
- · 미 에너지부 시범운행 (32대) : '04.12 ~ '09.12

■ 독자개발: 기술확보를 통한 지속적 시장경쟁력 확보

경영학회 / 2008.11.07

국내 실증평가용 연료전지차 / 연료전지버스 [2006]

Tucson/Sportage FCEV

승용		GEN I (2006)	GEN II (2008)
연료전지시스		80 kW	100 kW
사양	보조전원장치	LiPB 전지 (20kW)	수퍼커패시터 (10F)
	구동모터시스템	40 kW/80 kW	50 kW/100 kW
	수소저장시스템	3.6kg @ 15C, 350 bar	←
	연비(혼합)	22.8 km/l	25 km/l
성능	항속거리	284 km	340 km
	최고속도	143 kph	152 kph
	가속성능	18.2 초	12.6 초

Fuel Cell Bus

버스		GEN I (2006)	GEN II (2009)
연료전지시스템		160 kW	200 kW
사양	보조전원장치	수퍼커패시터 (9.7F)	←
	구동모터시스템	120 kW/240 kW	←
	수소저장시스템	40kg @ 15C, 350 bar	←
	연비(혼합)	12 km/kg	←
성능	항속거리	380 km	←
	최고속도	74 kph	←
	가속성능	15 초	14 초

■ 독자개발: 기술확보를 통한 지속적 시장경쟁력 확보

i-Blue : 연료전지 전용 플랫폼 [2012]

- 100kW급 금속분리판 적용 스택
- 연료전지시스템 효율 60%
- -30°C 저온 시동
- 균등한 무게 배분을 통한 조정 안정성 확보

주행거리	375 miles (600 km)
최대속도	106 mph (170 kph)
연료전지 파워	134 마력 (100 kW)
슈퍼 커패시터	450V / 100kW / 13 Wh/L
구동 모터	FR In-line 100 kW, RR In-wheel 20 kW×2
연료	Hydrogen (700 Bar)

기술개발 성과 및 기술 수준

- Participating in Michelin Challenge Bibendum (2001, 2003, 2004)

- Participating in EVS21 Monte-Carlo Rally (April 2nd, 2005)

→ 2nd Rank (Fuel Mileage 1st : 80 km/kg≈21.3km/l)

■ 기술개발 성과 및 기술 수준

Best in Class Technology in Michelin Challenge Bibendum (2007)

Manufacturer	Noise	Emision	Fuel Economy [*]	CO ₂
Hyundai (FCEV)	Α	Α	Α	Α
Daimler (F-Cell)	В	Α	Α	Α
Daimler (Hygenius)	С	Α	-	A
GM (Equinox)	С	Α	В	A
Nissan (X-trail)	В	Α	С	Α
Ford (Edge)	С	Α	С	A
Chery (Eastar)	В	Α	С	A
SAIC (Shanghai)	В	Α	С	A
SAIC/VW (Passat)	С	Α	С	Α

^{*} Fuel Economy is calculated after driving 171.7km during road rally.

■ 기술개발 성과 및 기술 수준

Hydrogen Road Tour in NA ('08. 08)

- 개요: **18**개 주 **31**개 도시 방문, 북미 횡단 (8/11 ~ 8/23)

- 주관: DOE, DOT, NHA, CaFCP

- 참여: BMW, Daimler, GM, Honda, Hyundai-Kia, Nissan, VW, Toyota

[Chino, HATCI 충전소]

◎ 운행 구간

- 운행구간: Portland in ME → MA, CT, NY, NJ, PA, DE, MD, DC,
 - VA, NC, SC, GA, TN, MO, NM, NV, AZ \rightarrow LA in CA
- 총 4,521 mile (운행구간 : 2,466 mile)
- 충전소: 현지 충전소 11개, 이동식 충전소 12회

○ 투입 차량

- 투싼 FCEV (2대)
 - . 독자개발 스택 장착
 - . 전구간 운행
- 스포티지 FCEV (1대)
 - . DOE사업 차량
 - . 부분 구간 참여

■ 기술개발 성과 및 기술 수준

2006 독일 월드컵 연료전지버스 운행

TUEV 인증 完 ('06. 5)

경기장 주변 셔틀 운행

■ 글로벌 네트워크 활동

- 美, DOE 연료전지차 Fleet 데모 프로그램 참여 (2004 ~ 2009)

- IPHE (International Partnership for the Hydrogen Economy) 지원 (2003)

- 캘리포니아 연료전지 파트너십 (California Fuel Cell Partnership, 2000 ~)

- 日, 연료전지 실용화 추진협의회 프로그램 참여 (2002 ~)

■ 美 DOE 시범운행 프로젝트

경영학회 / 2008.11.07

1. 운영 목적 :

① 북미 실 도로 및 User 운행을 통한 연료전지 차량 개발 Data 확보

② 차량 – 수소충전소 관련 안전 / 표준 / 법규 대응기술 개발

2. 투자 예산 : 1억불 (미정부 보조금 : 50%)

3. 운영 기간: 2005. 5. ~ 2009. 9. [5년]

4. 운영 규모 : 총 32대 (FJM 16대 + FKM 16대)

3개 지역, 5개 기관 (충전소 6기)

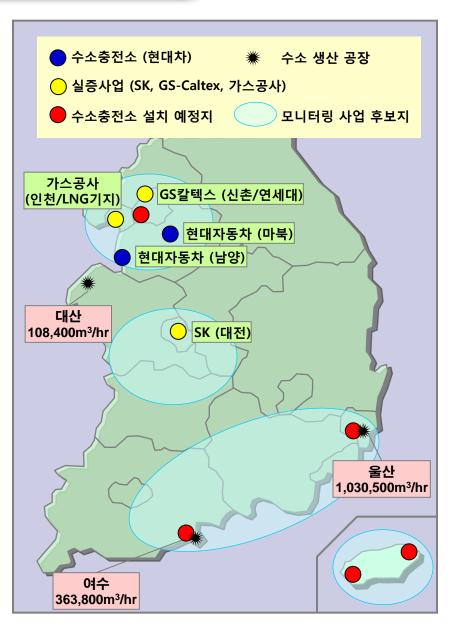
530,000km 운행 중

운행 지역	운행 기관	차량 (대)	충전소 (기)
캘리포니아주 남부 (치노)	HATCI SCE	5 10	1 2
캘리포니아주 북부 (새크라멘토)	CARB AC Transit	3 9	1 1
미시간주 (앤아버)	US Army	5	1
3개 지역	5 기관	32 대	6기

■ 국내 시범사업 참여 (지경부)

경영학회 / 2008.11.07

1. **기간 : 2006**. **8 ~ 2009**. **7** (3년, 차량 투입 기준)


2. 규모 : 승용 30대, 버스 4대

연도	승용	버스	충전소
1차년도	4	1	2
2차년도	8	1	2
3차년도	18	2	1

- **3. 수소충전소 : 8기** (5기 신규 건설)
 - 실증사업 3기 (SK, GS-Caltex, 가스공사)
 - 5기 신규 (서울 1, 제주 2, 경남 1, 전남 1)
- 4. 시범 지역: 수도권, 중부권, 남부권 및 제주도 승용 12대, 버스 2대 운행 중: 270,000 km

■ 현대-기아 연료전지차 개발 로드맵

경영학회 / 2008.11.07

1 단계 [~'06] 2 단계 ['07 ~ '09] 3 단계 ['10 ~]

선행 기술 개발 및 실증 시험

양산설계 / 생산기술 확보

소량 생산

연료전지 자동차 소량 생산 ['12]

소량 생산체제 구축 [10]

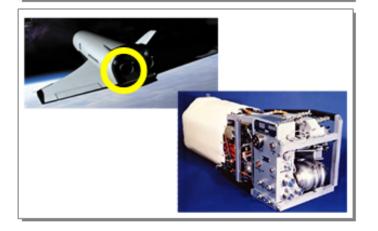
국내 모니터링사업 실시 (승용 30대, 버스 4대) ('06 ~'09) 독자 연료전지시스템 탑재

연료전지 버스 독자 개발 ['06]

미 에너지성 시범운행 (32대) ['04 ~ '09] 투싼 / 스포티지 연료전지차

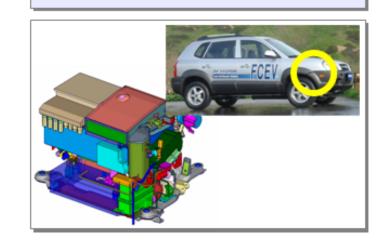
캘리포니아 연료전지 파트너쉽 참여 ['00] <mark>싼타페 연료전지자</mark>

연료전지차 1호 (스포티지) ['00]



차량용 연료전지시스템 개발 이슈

경영학회 / 2008.11.07


우주항공용 전력발생장치

차량용 품질 확보

- ▶ 성능 및 내구성
- 가격
- ▶ 부피 및 중량
- 안전성 (충돌, 수소)
- ▶ 상품성
- ▶ 품질 및 신뢰성
- ▶ 모듈화, 조립성

연료전지차량용 엔진

美, DOE 목표

※ 500,000 FCEVs/년

구 분	현재 [2008]	목표 [2015]			
연료전지시스템 내구성	3,000 hr	5,000 hr			
연료전지시스템 가격	\$80/kW (8백만원/대)	\$30/kW (3백만원/대)			
냉시동성	~ 120 sec	30 sec			
귀금속 전극촉매 함량	0.7 g/kW (70g/대)	0.2 g/kW (20g/대)			

■ 실용화 과제 : 수소 충전 인프라

경영학회 / 2008.11.07

선진국에서는 수소경제를 위해 단계별 수소인프라 구축 사업 추진 중

Pada September Of Deployment and Regional Infrastructure by 2025 Come TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 TOKYO Representative Ct/ Deployment and Regional Infrastructure by 2025 Representative Ct/ Deployment and Regional Infras

○ 수소인프라구축 3 단계 전략

'12 ~ '15 : LA와 뉴욕 중심

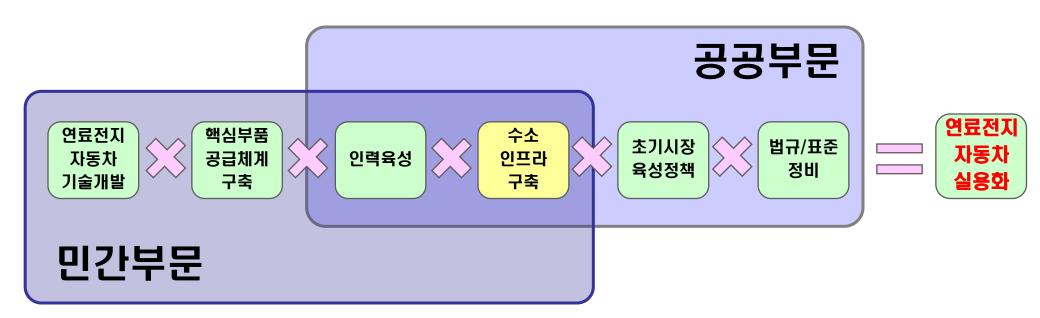
'16 ~ '19 : 북가주, 동부 주요도시 디트로이트, 달라스.

아틀란타

'20 ~ '25 : 전 주유소의 15% 확보 휴스턴, 피닉스, 덴버 St. Louise, 필라델피아

○ 수소인프라구축 3단계 전략

- l. 대도시 주변지역 (동경, 오사카, 나고야)
- II. 주변 대도시, 주변 위성도시와 연계
- Ⅲ. 일본 전지역 확대
- 실증 및 보급초기 단계에서는 수소인프라 구축 선행 (FCCJ '08)


○ 각 지역에 맞는 수소생산 프로그램

- CUTE 프로그램에서 버스 운행 도시에 적합한 수소인프라 구축
- HyCHAIN, HyLights 등 다양한 FCEV 실증/시범운행과 연계한 수소인프라 구축

자동차산업의 변화와 기회

자동차 패러다임 변화 → 산업사회의 변화 → 미래 새로운 성장의 기회

연료전지자동차 실용화는 공공/민간 부문의 긴밀한 협력 체제 구축 필요

■ 수소연료전지차 실용화시나리오

※ 기본자료: 신·재생에너지 RD&D 전략 2030 (에너지관리공단 신·재생에너지센터, 2007. 11)

- 2009 - 2010 -

- 2011 - 2012 -

- 2015 - 2016 -

P1. 기반기술개발/실증

P2. 사회경제적실증

P3. 초기시장형성

P4. 시장확대/양산

- 기술개발 기반구축
- 핵심부품 국산화
- 실도로 Feasibility 평가

- 생산 기반구축
- 사용자의 기술수용성 평가
- 대규모 실증사업

- 초기 시장 육성
- 산업 성장모델 구체화
- 일반인 대상 한정보급

- 시장 확대
- 보급정책 본격 추진
- 민간 중심 개발 체제

모니터링 1단계

- 연료전지차 30대
- 연료전지버스 4대
- 수소충전소 10기
- 전문기관 중심 운행
- 수도권,대전,울산,역수,제주

모니터링 2단계

- 연료전지차 200대
- 연료전지버스 20대
- 수소충전소 20여기
- 공공기관 중심 운행
- Carbon Neutral 단지조성

시범보급 1단계

- **연료전지차 1,000대/년**
- 연료전지버스 100대/년
- 수소충전소 (상용화수준)
- 공공기관 중심 운행
- 주요 대도시

시범보급 2단계

- 연료전지차 10,000대/년
- 연료전지버스 100대/년
- **− 수소충전소 (상용화수준)**
- _ 일반인 운행
- 주요 도시 확대 (네트워크화)

■ 수소연료전지차 보급사업 효과 (2010년 이후)

[1] 경제/환경적 측면

	2012년	2015년	2018년	2025년	ИП
차량 규모 때/년)	1,000	10,000	10,000	120,000	
매출액 증가 (억원)	176	1,417	3,860	5조 4,907	
생산 유발 효과 (억원)	406	3,263	8,885	12조 6,396	생산유발계수: 2.302
고용창출 효과 (g)	489	3,948	10,751	152,938	고용창출계수: 1.21명/억원

	2012년		2015년		2018년		2025년		비고
대기오염피해절감효과 (천ton/억원)	0.1	4	0.6	51	2.8	322	23.8	3,964	
이산화탄소저감효과 (천ton/억원)	3.1	5	38.3	52	214.6	342	2,379	3,798	
운행 비용 저감 효과 (억원)	9		153		2,021		2조 8,761		
원유 수입 대체 효과 (억원)	_		158		1,527		7,923		

[2] 사회적 측면

- ☑ Carbon Neutral 사회로의 진입 → 에너지 자립 가능성 확인
- \square 세계 최대 규모의 수소연료전지자동차 시범 보급 지역 육성 ightarrow 국가 위상 제고

감사합니다.