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Portfolio Construction/
Manager Selection

Strategic
Asset Allocation

» Model unconstrained portfolio

» Source alpha

* Incorporate client-driven « Diversify beyond beta

constraints : :
« Actively manage risk

» Optimize to draw down risk

and recovery « Align interests with investors

(managing fees and
« Simulate model portfolio expenses)

outcomes

Hd=HIdHi 22 23X s0l e 2851 A= 20kCH

SE0ICH dell EU0IEHZ 49

Tactical
Asset Allocation

» Monitor and assess seven
key tactical indicators

« Evaluate client portfolios, for
example — tracking error,
stress tests

» Rebalance quarterly
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Magic coin versus magic dataset

The dimension of a problem refers to the number of input variables (actually,
degrees of freedom).

60000000
1_D il ® b

e-D 3-D [ ° °

The curse of dimensionality

*The exponential increase in data required to densely populate space as the
dimension increases.

*The points are equally far apart in high dimensional space.
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Typical ML application

Asset pricing

Signal-to-noise Outcome observable
e.g. { hotdog, not hotdog }

Big Data dimensions N and J big

Sparsity Often sparse
e.g., some regions of
image irrelevant

Lucas critique Often not an issue
e.g. hotdogs don't change
shape in response
to image classification

Very noisy observation
of outcome

e.g. {high E[r], low E[r]}
J big, N not so much

Unclear

Investors learn from
data and adapt

= X : Stefan Nagel's webstie
https://www.chicagobooth.edu/faculty/directory/n/stefan-nagel
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https://www.chicagobooth.edu/faculty/directory/n/stefan-nagel

SAE0 ML BHE6H)I1: 210I0IE ACHOl IS0 S24 206l
=),

» Low signal-to-noise ratio, high J/N = Imposition of prior
knowledge more important than in typical ML application

» Functional forms and distributional assumptions
» Penalty function

» Views about what is implausible should be guided by economic
reasoning = e.g., express absence of near-arbitrage in prior

» Not obvious that methods striving for sparsity (e.g., Lasso)
are necessarily appropriate

= X : Stefan Nagel's webstie
https://www.chicagobooth.edu/faculty/directory/n/stefan-nagel
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(0ll) Al & Ol &F & & (market anomalies)0fl CHet A Z 0] SHLE & A =& Al EOIASHA S
HMHAHEO2 22|otK L= TAA JXNEHEL 2EHEBIOIM = DdotAl &= 240| CHEGHCH &
AMEOIASAES AS0IHSEE 1 S 20 =M EXot=s HES 2010 SICH HHE
SIA=0AH = Al EOIASE A2 TAAE Adot=0 Jl= =2 J120(J| HZ 0| CH.

Han, M. , Lee, D.-H. and Kang, H.-G. (2020), "Market anomalies in the Korean stock market",
Journal of Derivatives and Quantitative Studies, Vol. 28 No. 2, pp. 3-50.
https://doi.org/10.1108/JDQS-03-2020-0004
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https://www.emerald.com/insight/search?q=Minyeon%20Han
https://www.emerald.com/insight/search?q=Minyeon%20Han
https://www.emerald.com/insight/search?q=Dong-Hyun%20Lee
https://www.emerald.com/insight/search?q=Dong-Hyun%20Lee
https://www.emerald.com/insight/search?q=Hyoung-Goo%20Kang
https://www.emerald.com/insight/search?q=Hyoung-Goo%20Kang
https://www.emerald.com/insight/publication/issn/1229-988X
https://www.emerald.com/insight/publication/issn/1229-988X
https://www.emerald.com/insight/publication/issn/1229-988X
https://www.emerald.com/insight/publication/issn/1229-988X
https://www.emerald.com/insight/publication/issn/1229-988X
https://www.emerald.com/insight/publication/issn/1229-988X
https://doi.org/10.1108/JDQS-03-2020-0004
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Market anomalies in the Korean

stock market

Minyeon Han, Dong-Hyun Lee and Hyoung-Goo Kang
Business School, Hanyang University, Seoul, Republic of Korea

Abstract

This paper aims to replicate 148 anomalies and to examine whether the performance of the Korean market
anomalies is statistically and economically significant. First, the authors observe that only 37.8% anomalies
in the universe of the KOSPI and the KOSDAQ and value-weighted portfolios have /-statistics that exceed
1.96. When the authors impose a higher threshold (an absolute value of f-statistics of 2.78), only 27.7% of the
148 anomalies survive. Second, microcaps have large impacts. The results vary significantly depending on
whether the sample included stocks in the KOSDAQ and whether value-weighted or equal-weighted
portfolios are used. The results suggest that data mining explains large portion of abnormal returns. Any
tactical asset allocation strategies based on market anomalies should be applied very cautiously.

Keywords Data mining, Anomaly, Factor, Microcap stocks, Tactical asset allocation
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Good xhnqq adn't wait!

The trend lszhdd«ng -
buy at the next
consoldabon

s

Darnnt | vgusu-d the

consohdation, but if | wast double it!
any longer, | wont peofit from
the trend. LET'S BUY! 7

Brisan!! Al this price, let's

Quch As soon as it

Il use this comection
increase my position

Drat! NI m;g\ agan. if's
cheaper than ast bme
anyhow

This is ti"lircn thi
was gong 1o ha

1 . #4 slong! 17
Ah, the price is going up goes back up. I'm More crazes who are
tot's watch the market selling out! going 10 get taken to
| dont bew-% ! It's down the deaners!
0 8 1/4! It's hit its absolute
bottorn! What "’!oeﬂoﬂ"'?‘f
OK,_ let's wait fgl it 10 recover -
otherwise this wil have fo be a
really l000000ong-lerm investmen! 13
It's going 10 15
What are the SEC doing about SRR tank again You wha?e?
s 2PN anyway
Enough’ I'm ge‘&nq out! And
stayng out
14
12 Told you so
Good thifig | sold
everything'!
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Interview

Daniel Kahneman: ‘Clearly Al is going
s t0 win. How people are going to adjust
is a fascinating problgm ¥ M i ,&{

Tim Adams
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© Daniel Kahneman in London in 2012: 'When artificial intelligence makes a mistake, that mistake looks completely foolish to humans, or almost evil." Photograph:

Richard Saker/The Observer

The Nobel-winning psychologist on applying his ideas to

organisations, why we’re not equipped to grasp the spread ofa

virus, and the massive disruption that's just round the corner Most viewed
13
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Wealthfront Betterment
Automatic portfolio rebalancing \/

Tax-loss harvesting
Customized portfolio

Automated deposits

By R

Individual goal setting

Fractional share investing

Minimum investment $500
Single stock diversification v

Get an additional
Refer-a-friend program miig:g;ur:; ;

every referral

15

N BN BY

None

Get 30 days of free management per
referral; refer three users and receive
one full year of free management.



M a rcu s - Savings Investments

Loans Tools & Resources Use loan invitation code
by Goldman Sachs’

The best of Clarity
Money has a new home

M:

Meet Marcus Insights: 100% free to use, even if you're not already a Good Morning, ‘\;:

Marcus customer. | ’ 3 !
t's nice to se
e

Clarity Money closed its virtual doors on March 5, 2021, but its most-
loved features have been re-imagined to create Marcus Insights.

Never stop learning
Already a Marcus customer? Log in

Cash and Savings

Available in US only. Certain functionality available only on iOS. $14,009.02

. £ Download on the ] GETITON
’ ® App Store ‘ " Google Play

Investments

% # % % % 45000+ 5-Star Ratings on the Apple App Store $1,347.83

July snapShOT
Marcus by Goldman Sachs® and Clarity Money are both brands of Goldman Sachs
Bank USA Remaining

aining Y
§1070.00 ou spent

the last few days.
|
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& (backward-looking)

Value at Risk =&
VaR

Historical VaR

Weighted Historical
Simulation VaR

Monte Carlo
Simulation VaR

Individual VaR
Portfolio VaR

Marginal VaR
Incremental VaR
Component VaR
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KOSPI and VKOSPI Inversely Correlated
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Relationship Between KOSPI % Change and % Change in the VKOSPI, 2009 - 2018
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* + - -

» But it gets weird out
e here at the tails
£ 0% /
>
© -
° +
—
T -2 + ~N
8 N
= \

4% /

— — —
6% s
' This is the Average  + y=-0.1145x+0.0466
Regression Line
-8%
-40% -30% -20% 10% 0% 10% 20% 30% 40% 50% 60%

VKOSPI 1-Day %Change
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EMotkl 2=C S HU A Zot= S8 4a 82 Knightian uncertainty (Knight 1921, Keynes
1921)0/0 H&3s &~ gl 28 S24AaH0I2t) 29 SO ofe A X9 &2 FIGHAL

By "uncertain” knowledge, let me explain, | do not mean merely to distinguish what is
known for certain from what is only probable. The game of roulette is not subject, in
this sense, to uncertainty... Or, again, the expectation of life is only slightly uncertain.
Even the weather is only moderately uncertain. The sense in which | am using the term
is that in which the prospect of a European war is uncertain, or the price of copper and
the rate of interest twenty years hence, or the obsolescence of a new invention, or the
position of private wealth owners in the social system in 1970. About these matters
there is no scientific basis on which to form any calculable probability whatever. We
simply do not know. Nevertheless, the necessity for action and for decision compels us
as practical men to do our best to overlook this awkward fact and to behave exactly as
we should if we had behind us a good Benthamite calculation of a series of prospective
advantages and disadvantages, each multiplied by its appropriate probability, waiting
to be summed. (Keynes, 1937, 213-214).
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Weekly edition = Menu

International

A mixed prognosis

The covid-19 pandemic will be
over by the end of 2021, says Bill
Gates
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Lopez-Lira, Alejandro and Tang, Yuehua, Can ChatGPT Forecast Stock Price Movements?
Return Predictability and Large Language Models (April 6, 2023). Available at SSRN:
https://ssrn.com/abstract=4412788 or http://dx.doi.org/10.2139/ssrn.4412788

Abstract

We examine the potential of ChatGPT, and other large language models, in predicting stock
market returns using sentiment analysis of news headlines. We use ChatGPT to indicate
whether a given headline is good, bad, or irrelevant news for firms' stock prices. We then
compute a numerical score and document a positive correlation between these "ChatGPT
scores" and subsequent daily stock market returns. Further, ChatGPT outperforms traditional
sentiment analysis methods. We find that more basic models such as GPT-1, GPT-2, and
BERT cannot accurately forecast returns, indicating return predictability is an emerging
capacity of complex models. Our results suggest that incorporating advanced language
models into the investment decision-making process can yield more accurate predictions and
enhance the performance of quantitative trading strategies.

Keywords: Natural Language Processing (NLP), Generative Pre-training Transformer (GPT),
Return Predictability

JEL Classification: C53, G10, G11, G12, G14, G17
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